part to the generation of the high lift coefficients, which some insects require to sustain flight.

References

¹Rosenhead, L. ed., *Laminar Boundary Layers*, Clarendon Press, Oxford, 1963, pp. 349-351, 382, 394.

²Osborne, M.F.M., "Aerodynamics of Flapping Flight with Application to Insects," *Journal of Experimental Biology*, Vol. 28, 1951, pp. 221-245.

³Weis-Fogh, T., "Quick Estimates of Flight Fitness in Hovering Animals, Including Novel Mechanisms for Lift Production," *Journal of Experimental Biology*, Vol. 59, 1973, pp. 169-230.

Response of a Symmetric Missile in a Spin-Varying Environment

Ben Zion M. Naveh*
Israeli Government, Tel Aviv, Israel

Nomenclature

	1 Willelle Million
$\mathbf{A}_{I,2}$	= constants
a_n	= coefficients in a power series expansion
b	$= (M_q \tau_\infty / I + i\omega_0) / c$
c	$=L_p/I_x$
C_D	= drag coefficient
$C_{L_{\alpha}}$	= lift coefficient
$C_{M_{\alpha}}^{L_{\alpha}}$	= static moment coefficient
$C_{Mp\alpha}^{m\alpha}$	= Magnus moment coefficient
C_{l_p}	= roll damping moment coefficient
$C_{M\dot{\alpha}}^{^{\prime p}}, C_{M_q}$	
I_{x} , I	= axial, transversal moments of inertia
i	$=\sqrt{-1}$
K_j	= am plitude of j mode $(j = 1,2)$
$L_{p}^{'}$	$= \rho V S \ell^2 C_{IP} / 4$
m	= mass
M_{α}	$=\rho V^2 \mathcal{S}\ell C_{M_{\alpha}}/2$
M_a	$= \rho V S \ell^2 C_{Ma}^{m\alpha} / 4$
n	= integer
P	$= d\phi/dt$, roll rate
P_I	$=P_{\infty}-P$
q	= complex angular velocity $(q = i\tilde{r} + \tilde{q})$
	= angular velocity components
ą̃,r̃ R	$=iI_x/Ic$
r_i	$= [M_q (I \pm \tau_{\infty})/2I + i(\eta \pm \omega_0)]/c$
$\begin{array}{c} r_j \\ S \\ t \end{array}$	= reference area
t	= time
V	= magnitude of velocity
$\alpha_1\beta_1$	= angles of attack and sideslip
α	$=\beta_I+i\alpha_I$
η	$=I_{x}P/2I$
λ_j	= damping rate of the j mode amplitude K_j/K_j
ρ	= air density
ϕ	= roll angle
$oldsymbol{\phi}_j$	=j-modal phase angle
$ec{\Phi_j}$	= degenerate hypergeometric functions
au	$=\eta/\omega$
ω	$=(\omega_0^2+\eta^2)^{1/2}$
ω_0	$= (M_{\alpha}/I)^{1/2}$
Superscrip	ts

() ' = primes denote derivatives with respect to s
() = dots denote derivatives with respect to t

Received Oct 6 1975; revision received March 1 1976. Re

Received Oct. 6, 1975; revision received March 1, 1976. Research was performed while author was with the Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Ind.

Index category: LV/M Dynamics, Uncontrolled.

*Research Engineer. Member AIAA.

() * = stars denote derivatives with respect to P_1 Subscripts = initial value

 ∞ = value at $t = \infty$ n = index e = envelop

Approximate Solution

THE response characteristics of a fin-stabilized symmetric missile for slowly time-varying parameters were formulated by C.H. Murphy. Consider a motion about the center of gravity in which all flight parameters and aerodynamic coefficients are constant, but where the roll rate is varying according to

$$P = P_{\infty} + (P_0 - P_{\infty}) e^{ct} \tag{1}$$

where c < 0. Expressing Murphy's formulations in the time domain

$$\dot{\phi}_i = \eta \pm \omega \tag{2}$$

$$\dot{\eta} = (L_P/I_Y) (\eta - \eta_{\infty}) \tag{3}$$

$$\ddot{\phi}_i = \dot{\eta} \left(1 \pm \tau \right) \tag{4}$$

and the damping rates are

$$\lambda_{j} = \frac{M_{q}}{2I} \left(I^{\pm} \tau \right) \mp \frac{L_{p}}{2I_{x}} \left(\tau - \tau_{\infty} \right) \left(I^{\pm} \tau \right) \pm \frac{M_{p_{\alpha}}}{I_{x}} \tau \tag{5}$$

Equation (5) suggests that there might be combinations for which λ_j will become positive for some time interval. Consider a special case, in the absence of Magnus moment.

Decreasing roll rate flight for which $P_{\infty} = 0$, Eq. (5) becomes

$$\lambda_j = \frac{I + \tau}{2I} \left(M_q \mp \frac{I}{I_s} L_p \tau \right) \tag{6}$$

For some P_0 , λ_I might become positive, for some time interval. Equation (5) should also be considered when test data is analyzed to determine Magnus moment coefficient.

Exact Solution

The finding that λ_j might become positive due to roll damping terms was considered important, and an attempt to find an exact solution was made. Consider the increasing roll rate case ($P_0 = 0$), with the previous assumptions.

The equation of motion in aeroballistic axes is 2

$$\ddot{\alpha} - (\frac{M_q}{I} + i\frac{I_x}{I}p)\dot{\alpha} + \omega_0^2 \alpha = 0 \tag{7}$$

Change the independent variable from t to P_1

$$P_I = P_{\infty} e^{ct} \tag{8}$$

and get

$$P_{l}^{2}\alpha^{**} + \left[\left(1 - \frac{M_{q}}{lc} - i \frac{I_{x}}{lc} P_{\infty} \right) P_{l} + i \frac{I_{x}}{lc} P_{l}^{2} \right] \alpha^{*} + \left(\frac{\omega_{0}}{c} \right)^{2} \alpha = 0$$
(9)

 α is assumed to be presented in power series of P_I

$$\alpha = P_I^r \sum_{n=0}^{\infty} a_n P_I^n \tag{10}$$

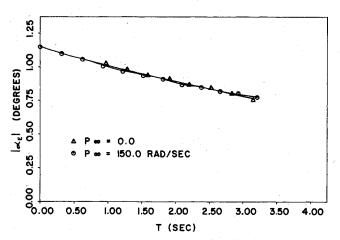


Fig. 1 The effect of P_{∞} on $|\alpha_E|$.

Substitute Eq. (10) into Eq. (9) and evaluate r and the a_n 's

$$r_j = [M_q(I^{\pm}\tau_{\infty})/2I + i(\eta_{\infty}^{\pm}\omega_0)]/c; \quad j = 1,2$$
 (11)

and

$$\alpha(t) = A_1 \Phi_I(r_1, l+b; RP_1) e^{cr_1 t} + A_2 \Phi_2(r_2, l-b; RP_1) e^{cr_2 t}$$
(12)

where

$$R = i(I_x/I)(1/c)$$
 (13)

$$b = (1/c) \left[(M_a/I) \tau_{\infty} + i\omega_0 \right]$$
 (14)

and,3

$$\Phi_{1,2}(r_{1,2}, 1^{\pm}b; RP_1 = 1 + \sum_{n=1}^{\infty} \frac{(RP_1)^n \prod_{k=1}^n (r_{1,2} + k - 1)}{n! \prod_{k=1}^n (k^{\pm}b)}$$
(15)

 $A_{1,2}$ are determined by the initial conditions. Observing Eq. (8), (11), (12) and (15) one notes that for

$$M_q < 0 \; ; \qquad c < 0 \tag{16}$$

$$(K_i/K_i) < 0 \tag{17}$$

for all t.

A similar solution can be found for $p_0 \neq 0$.

Numerical Calculations

To check these results, an example that causes Eq. (5) to become positive at $t \approx 0$ was run on a 6-D Computer Program, 4 at the University of Notre Dame. The results are

Table 1 Data for computations

$C_{Mp\alpha}$	=0	_
$C_{\ell_{-}}$	= -1.76 1/rad	
$C_{\ell_p} \\ C_{M_q}$	= -8.80 1/rad	
$C_{M_{\alpha}}^{M_{q}}$	= -0.88 1/rad	
ω_0	= 10 rad/sec	
V	= 1000 ft/sec	
ρ	$= 0.002309 \text{ slugs/ft}^3$	
α_0	= 1.15 degrees	
I_r	$= 0.1 \text{ slugs-ft}^2$	
\hat{I}	$= 1.0 \text{ slugs-ft}^2$	
d	$=0.5 \mathrm{ft}$	
Δt_{\perp}	= integration = 0.001 sec	

shown in Fig. 1. The data for the computation are presented in Table 1.

VOL. 14, NO. 5

Conclusions

The final conclusion is that L_p cannot cause λ_j to become positive during flight for any interval of t, and should not, therefore, restrict P_{∞} or P_0 . However L_p should be considered in the process of evaluating other aerodynamic coefficients from flight data. For this purpose one has to verify that the approximate solution of Eq. (5) is in accordance with the exact solution.

References

¹Murphy, C. H., "Free Flight Motion of Symmetric Missiles," Ballistic Research Laboratories, Aberdeen Proving Ground, Md., 1216, AD 442757, July 1963.

²Nicolaides, J. D., "Free Flight Missile Dynamics," University of Notre Dame, unpublished notes.

³Gradshteyn, I. S. and Ryzhik, I. M., Tables of Integrals, Series and Products, Academic Press, New York, 1965.

⁴Ingram, C. W., "A Computer Program for Integrating the 6-D of Freedom Equations of Motion of a Symmetrical Missile," University of Notre Dame, unpublished.

Bounds for the Critical Load of Certain Elastic Systems under Follower Forces

C. Sundararajan*

Foster Wheeler Energy Corporation, Livingston, N.J.

Introduction

LASTIC systems subjected to follower forces are, in general, nonconservative in inature, and they can have both static and dynamic instabilities, called divergence (buckling) and flutter, respectively. However, there is a class of follower force systems, called the divergence type systems, which can have only divergence instability (see, for example Refs. 2-41). In this Note, an approximate Rayleigh-quotient-type solution for a class of divergence-type systems is presented, and the approximate solution is shown to be either an upper or lower bound to the exact solution, depending on the choice of the approximating deflection function.

Elastic System

Consider an undamped, one-dimensional, linearly elastic system occupying a length ℓ . Let the equation of motion be

$$m(d^2w/dt^2) + K(w) + P_cF_c(w) + P_nF_n(w) = 0$$
 (1)

and the boundary conditions be

$$B(w) = 0 (2)$$

where

x =spatial coordinate of the system

t — time

w =predominant deflection of the system from the equilibrium position, w = w(x,t)

m =mass density of the system, m = m(x)

 P_c = conservative component of the external forces

 P_n = nonconservative component of the external forces

Received Oct. 21, 1975.

Index categories: Structural Dynamic Analysis; Structural Stability Analysis.

*Senior Research Engineer, Solid Mechanics Department.